
How and where to perform scripting with the
SiteKiosk API

You have multiple options to use scripting to enhance your own or remote pages, in this document the
multiple ways to do this will be explained.

The Advanced Config is only available when using the expert mode of the Content Editor.

Any JavaScript code you want to put as value into the Advanced Config needs to be encoded, as pure
JavaScript will break the system.
Following online tool will help you encode such scripts:
https://coderstoolbox.net/string/#!encoding=js&action=encode&charset=utf_8

To activate the expert mode of the Content Editor you need to append &expert to the URL of the project
you are displaying in the WebBrowser.

For example you have opened a project and this is being displayed in the WebBrowser:

You need to edit the url, so that it will look like this (look at the end of the URL):

Now load this URL and reload the page after it has been loaded. You should now see the following
elements at the toolbar of the content editor:

With this you have activated the expert mode which allows you to use the Advanced Config and gives you
the ability to add content scripts, which are described later in this document.

SiteKiosk API Setup

The Advanced Config

Expert Mode

The SiteKiosk API is the API with which you can use SiteKiosk methods in either the Android or the
Windows client. The SiteKiosk API is a system which encapsulates both SiteKiosk Online versions
(Windows and Android).

It provides the ability to access the system, its devices, the current displayed content and state.

To know the abilities of the SiteKiosk API you can have a look into the SiteKiosk API documentation, which

you can find here: https://sitekiosk.online/projects/external/apidocs/generated/index.html

The SiteKiosk API always begins with siteKiosk. followed by the modules, methods or properties you want
to use. For example, to write a log message your code will look like this:
siteKiosk.log.info("Hello World");

As we only move methods into the SiteKiosk API when there is a customer demand for it, the scope can be
a little bit limited for more specialized needs. For this there is an internal SiteKiosk API, which is different for
each of the SiteKiosk Online client versions (Android and Windows). The SiteKiosk API will wrap the
internal SiteKiosk API.

We won't provide in depth documentation for it, but be assured that most wishes can be fulfilled. Just ask us
and we will find or create the solution for it.
The internal SiteKiosk API always begins with __siteKiosk. followed by the modules, methods or properties
you want to use. For example, to write a log message your code will look like this:
__siteKiosk.log.info("Hello World");

To run a script inside the global SiteKiosk context after SiteKiosk has been loaded, without any dependency
to other pages or the content player, you can add any JavaScript code, encoded into the config path
system.startupScript. Just add a new entry into the Advanced Config using this path and your encoded
JavaScript code.

The provided script will be run as an async function.

SiteKiosk API

SiteKiosk API

Internal SiteKiosk API

SiteKiosk API in the global SiteKiosk context

To write scripts which should run inside the content player you first need to activate the expert mode of the
Content Editor. When this is done you can proceed.

Now you need to open the Settings->Expert dialog.

SiteKiosk API inside the Content Player

Inside the settings dialog add a new script by pressing the "+ Add" button. You can e.g. then enter your
JavaScript code which should be executed.:

Such script will be executed after each logout and start of SiteKiosk Online. You need to remember this,
because some actions are permanent (like registering devices).

If you have full control over a WebPage you can grant SiteKiosk API access to your page. You do this be
writing an URL template which matches your page URL

For example, if you want to grant the URL https://www.somedomain.com/myPage.html the needed

rights you can use exactly this URL.

If you want to provide the rights to all pages with https://www.somedomain.com/subDirectory in its

URL you need to use https://www.somedomain.com/subDirectory/* as URL template.

To add a URL template for the SiteKiosk API rights open Settings->Client and scroll to the URLS with
SiteKiosk Object Model Permission sub section. Then add the template, after you finished this, it should
look like this:

Now your page can use the SiteKiosk API when it is loaded inside a WebPage element. Simply use it in a
<script> DOM element or use it in a script you have loaded by a <link> DOM element. You can directly use
the SiteKiosk API, you don't need to initialize anything and you don't need to import additional modules.

SiteKiosk API inside a WebPage you control

This is a more complex case, but the SiteKiosk Online Windows Client provides the ability to do it.

We provide two solutions for it.

The first solution is by injecting a script into every page before it is loaded, we call those preload scripts. To
use these you need to enhance the SiteKiosk Online configuration and an array of preload script rules.

You do this by creating a new Advanced Config element in Settings->Client and scroll to the Advanced
Config sub section and then add a new entry for the path system.browser.preloadScripts.

Now you can put JSON content which describes for which URL template the preload script should be
applied and where to find the script file. The following sample should be self describing, but you can always

look up the needed fields HERE.

[

 {

"filter": {

"url": "https://www.somedomain.com/myPage.html"

 },

"script": "C:\\SomePath\\myScript.js"

 }

]

The clear downside of the approach is that you need to have the preload script file on the client machine.

The second solution is by using the SiteKiosk Online web page automation system. You specify the URL
template for which the automation should be applied and provide an array of steps which should be
executed. One of these steps is the ExecuteScript step. The JavaScript code is encoded inside the step.

To encode or decode JavaScript you can use this online tool: http://coderstoolbox.net/string/#!

encoding=js&action=encode&charset=utf_8

You can add web page automation by using the Advanced Config, like in the first solution, but in this
solution you need to use the system.browser.webPageAutomation config path.

SiteKiosk API inside a WebPage you don't control

Solution 1

Solution 2 (Recommended)

The following sample uses this script to be run when the URL https://www.somedomain.com/someSubPage
has been loaded:

This script will wait until a readable smart card has been inserted and will then wait 2 seconds before the
script finishes. You can either use Promises or just perform the code without it, this is up to you. The step
will be marked as finished when the Promises resolves and will continue executing any other steps.

This is the JSON content for the web page automation which can be put into the value of the config path:
[

 {

"name": "WaitUntilUserInsertsSmartCard",

"blockPage": false,

"filter": {

"url": "https://www.somedomain.com/someSubPage"

 },

"steps": [

 {

"expectedStepResult": true,

"ignoreStepResult": false,

"executeScript": {

"script": "return new Promise(resolve => {\n\tconst smartCardReaderSensor

= __siteKiosk.io.devices.findByName(\"SmartCardReader\");

\n\tsmartCardReaderSensor.on(smartCardReaderSensor.events.dataGenerated,

onSensorDataGenerated);\n\tonSensorDataGenerated(smartCardReaderSensor,

smartCardReaderSensor.lastData);\n\n\tfunction onSensorDataGenerated(sensor,

sensorData) {\n\t\tif (!sensorData || sensorData.isCardRemoved || !

sensorData.smartCard.name) return;

\n\t\n\t\tsmartCardReaderSensor.off(smartCardReaderSensor.events.dataGenerated,

onSensorDataGenerated);\n\t\t\n\t\tsetTimeout(resolve, 2000);\n\t}\n});",

"timeoutInMs": 0

 }

 }

]

 }

]

Here a much simpler sample, which you can use as a template, this sample will only log a message into the
SiteKiosk Online log:

[

 {

"name": "LogHelloWorld",

"blockPage": false,

"filter": {

"url": "https://www.somedomain.com/someSubPage"

 },

"steps": [

 {

"expectedStepResult": true,

"ignoreStepResult": false,

"executeScript": {

"script": "siteKiosk.log.info('Hello World!')",

"timeoutInMs": 0

 }

 }

]

 }

]

The web page automation feature is also a great way to remove and/or replace the content of a whole
page, automatically click elements, eg.

